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Abstract. We review and improve a recently introduced method for the detection of communities
in complex networks. This method combines spectral properties of some matrices encoding the
network topology, with well known hierarchical clusteringtechniques, and the use of themodularity
parameter to quantify the goodness of any possible community subdivision. This provides one of
the best available methods for the detection of community structures in complex systems.

Complex networks have recently been an active topic of investigation in physics
because of their relevance in the modeling of many real complex systems ranging from
social and communication networks to biology and neural sciences [1]. A common
feature of many of these real networks is the presence of communities, that is subsets of
nodes with high mutual interconnectivity and only few linksto the rest of the network.

The importance of their proper detection stems from many different causes: first of
all they provide a coarse-grained structure that can notoriously simplify the analysis of a
large network. Moreover, communities can be identified as functional units in several
cases of biochemical or neural networks. Therefore, even ifthere is no commonly
accepted quantitative definition of community, many algorithms have been proposed
to split a network into densely interconnected subsets [2, 3, 4]. A recent comparative
review of most of the available community finding methods canbe found in [5].

For other problems, similar in spirit to this one, as for example graph partitioning (in a
given number of subsets), image partitioning, or graph visualization, spectral techniques
have proven to be very useful [6]. Such methods are based on the spectral analysis of
a suitable matrix encoding the corresponding network topology. Similar techniques can
also be exploited for the detection of communities [7, 8].

Here we give a brief outline of a method we recently introduced [8] which com-
bines spectral properties, hierarchical clustering techniques, and the optimization of the
modularity (a quantity introduced to quantify the validityof any given community sub-
division) [9].

The nodes of a given network are represented as points in aD-dimensional space
whose coordinates are the components of the firstD non-trivial eigenvectors of the cor-
responding Laplacian matrix [11]. Once the nodes have been embedded in a space, a
distance (Euclidean, angular, etc [8]) between them can be defined. Afterwards, stan-



dard methods such as hierarchical clustering techniques [10, 8] are employed to group
the nodes according to their mutual distances: nearby sitesare progressively grouped
together. Proceeding like this, a dendrogram, that is a treerepresenting the hierarchy, is
obtained. In order to determine at which level the “tree” should be looked at to obtain
the best community-splitting, we have to quantify the quality of the partitions. For this
purpose, themodularity Q, defined as the fraction of internal edges minus its expected
value for a random graph with the same number of links for eachcommunity, has been
introduced. The output of the algorithm is therefore the partition of the dendrogram
giving the highest value ofQ.

The justification for using the eigenvectors of the Laplacian matrix representing
the network, can be understood by exploiting the connectionbetween the eigenvalue
problem and the minimization of the quadratic form

∑
links

(xi −x j)
2 = xTLx, (1)

where thex= {xi} is a vector of real values assigned to the nodes andL is the Laplacian
matrix [11]. Minimizing this expression is a way to impose the condition that connected
nodes should be given a similar value ofx. Indeed, it is easy to see that minimizing
equation (1) with a normalization condition on vectorx (∑x2

i = 1) yields the eigenvalue
equation for matrixL. The first eigenvector is trivial (constant) and the corresponding
eigenvalue is zero: actually if allxi are equal the sum (1) is zero and it is its minimum
possible value. The following eigenvector (with an eigenvalue larger than 0 for any con-
nected network) corresponds to the non-trivial minimum andtherefore its components
can be used to partition the nodes. Indeed, as shown in [8], also the following eigenvec-
tors contain useful information and can be profitably used tofind communities in the
network. The number of eigenvectorsD that have to be taken into account in order to
obtain a good detection of communities isa priori not known. Therefore, the whole pro-
cedure is repeated in the algorithm for differentD’s and the subdivision corresponding
to the highest value of the modularity is selected.

If we assign to the nodes a weight proportional to their degree, the normalization
condition becomes∑kix2

i = xTDx = 1; in this case the minimization of equation (1)
is transformed into the eigenvalue equation for the matrixL′ = D−1L. As before, the
first non trivial eigenvector corresponds to the non-trivial minimum of the sum (1).
Therefore, we can wonder how the original method performance (as presented in [8])
is affected by replacing the eigenvectors ofL by those ofL′.

First of all, we applied both algorithms (withL and withL′ respectively)1 to computer
generated networks with a given community structure [2]. These networks contain 128
nodes, split into 4 equal-size communities; edges are randomly extracted in such a way
that each node has, on the average,kin links to other nodes in the same community and
kout to to the rest of the network, withkin +kout = 16. For smallkout the communities are
almost disconnected, while increasing this value they become less and less separated, so
that detecting them becomes a very difficult and not clearcuttask. Since the communities
are known, we can measure the quality of the algorithm by counting the number of nodes

1 An implementation of the algorithms can be found athttp://www.ugr.es/ d̃onetti/.
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FIGURE 1. Fraction of nodes correctly classified by the algorithm (averaged over 200 networks) as a
function ofkout, using the eigenvectors ofL andL′. In both cases angular distance and complete linkage
clustering are used (see [8]).

that are correctly classified. In figure 1 we plot the corresponding fraction of nodes, and
we can see that when the eigenvectors of the normalized Laplacian matrixL′ are used,
the method produces much better results. Moreover, in a veryrecent independent and
systematic comparison of different community-finding methods performed by Danon
et al. [5], it has been found that our method, equipped with the normalized Laplacian
matrix, exhibits an extremely good performance and is amongthe most convenient
choices.

Another network which is used as a test for many community finding algorithm
is the Zachary karate club [12]. In this case, we can compare the modularity value
corresponding to the best split in the two cases: using the Laplacian eigenvectors we
obtainQ = 0.412 while using the eigenvectors ofL′ leads toQ = 0.419 which is the
best value obtained so far for such a workbench problem [4].

As a last example, we have studied the jazz bands network [13], which is also one
of the prototypical instances studied in this field. Using the Laplacian we measure
Q = 0.437, while withL′ the modularity increases toQ = 0.444 (almost identical to
the best available result [4]).

Summarizing, we outlined the connection between the detection of communities
and the spectral properties of some proper matrices describing the network topology.
Moreover, we improved the performance of the algorithm described in [8] by using the
eigenvectors of a different matrix: the normalized Laplacian matrix. We do not have a
clear understanding of why the method equipped with this matrix gives better results
than with the Laplacian matrix, but as a matter of fact this isactually the case in all



the tested examples. Finally, let us mention that the method(with either matrix) can be
easily generalized to the case of weighted networks.
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